Immunogenetic novelty confers a selective advantage in host-pathogen coevolution.
نویسندگان
چکیده
The major histocompatibility complex (MHC) is crucial to the adaptive immune response of vertebrates and is among the most polymorphic gene families known. Its high diversity is usually attributed to selection imposed by fast-evolving pathogens. Pathogens are thought to evolve to escape recognition by common immune alleles, and, hence, novel MHC alleles, introduced through mutation, recombination, or gene flow, are predicted to give hosts superior resistance. Although this theoretical prediction underpins host-pathogen "Red Queen" coevolution, it has not been demonstrated in the context of natural MHC diversity. Here, we experimentally tested whether novel MHC variants (both alleles and functional "supertypes") increased resistance of guppies (Poecilia reticulata) to a common ectoparasite (Gyrodactylus turnbulli). We used exposure-controlled infection trials with wild-sourced parasites, and Gyrodactylus-naïve host fish that were F2 descendants of crossed wild populations. Hosts carrying MHC variants (alleles or supertypes) that were new to a given parasite population experienced a 35-37% reduction in infection intensity, but the number of MHC variants carried by an individual, analogous to heterozygosity in single-locus systems, was not a significant predictor. Our results provide direct evidence of novel MHC variant advantage, confirming a fundamental mechanism underpinning the exceptional polymorphism of this gene family and highlighting the role of immunogenetic novelty in host-pathogen coevolution.
منابع مشابه
Host–Pathogen Coevolution: The Selective Advantage of Bacillus thuringiensis Virulence and Its Cry Toxin Genes
Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorh...
متن کاملParasite-mediated selection drives an immunogenetic trade-off in plains zebras (Equus quagga).
Pathogen evasion of the host immune system is a key force driving extreme polymorphism in genes of the major histocompatibility complex (MHC). Although this gene family is well characterized in structure and function, there is still much debate surrounding the mechanisms by which MHC diversity is selectively maintained. Many studies have investigated relationships between MHC variation and spec...
متن کاملExperimental viral evolution to specific host MHC genotypes reveals fitness and virulence trade-offs in alternative MHC types.
The unprecedented genetic diversity found at vertebrate MHC (major histocompatibility complex) loci influences susceptibility to most infectious and autoimmune diseases. The evolutionary explanation for how these polymorphisms are maintained has been controversial. One leading explanation, antagonistic coevolution (also known as the Red Queen), postulates a never-ending molecular arms race wher...
متن کاملOverdominant vs. frequency-dependent selection at MHC loci.
There has been much discussion recently about the relative roles of overdominant and frequency-dependent selection in the maintenance of polymorphism at major histocompatibility complex (MHC) loci. This has arisen since the confirmation, using nucleotide sequence data from the antigen binding sites, that balancing selection is mainly responsible for the observed polymorphism (HUGHES and NEI 198...
متن کاملTwo-step infection processes can lead to coevolution between functionally independent infection and resistance pathways.
There is growing evidence that successful infection of hosts by pathogens requires a series of independent steps. However, how multistep infection processes affect host-pathogen coevolution is unclear. We present a coevolutionary model, inspired by empirical observations from a range of host-pathogen systems, where the infection process consists of the following two steps: the first is for the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 115 7 شماره
صفحات -
تاریخ انتشار 2018